Reference: Smit A, et al. (2003) Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae. J Agric Food Chem 51(17):4909-15

Reference Help

Abstract


Phenolic acids, which are generally esterified with tartaric acid, are natural constituents of grape must and wine and can be released as free acids (principally p-coumaric, caffeic, and ferulic acids) by certain cinnamoyl esterase activities during the wine-making process. Some of the microorganisms present in grape can metabolize the free phenolic acids into 4-vinyl and 4-ethyl derivatives. These volatile phenols contribute to the aroma of wine. The Saccharomyces cerevisiae phenyl acrylic acid decarboxylase gene (PAD1) is steadily transcribed, but its encoded product, Pad1p, shows low activity. In contrast, the phenolic acid decarboxylase (PADC) from Bacillus subtilis and the p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum display substrate-inducible decarboxylating activity in the presence of phenolic acids. In an attempt to develop wine yeasts with optimized decarboxylation activity on phenolic acids, the padc, pdc, and PAD1 genes were cloned under the control of S. cerevisiae's constitutive phosphoglyceratekinase I gene promoter (PGK1(P)()) and terminator (PGK1(T)()) sequences. These gene constructs were integrated into the URA3 locus of a laboratory strain of S. cerevisiae, Sigma1278b. The overexpression of the two bacterial genes, padc and pdc, in S. cerevisiae showed high enzyme activity. However, this was not the case for PAD1. The padc and pdc genes were also integrated into an industrial wine yeast strain, S. cerevisiae VIN13. As an additional control, both alleles of PAD1 were disrupted in the VIN13 strain. In microvinification trials, all of the laboratory and industrial yeast transformants carrying the padc and pdc gene constructs showed an increase in volatile phenol formation as compared to the untransformed host strains (Sigma1278b and VIN13). This study offers prospects for the development of wine yeast starter strains with optimized decarboxylation activity on phenolic acids and the improvement of wine aroma in the future.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Smit A, Cordero Otero RR, Lambrechts MG, Pretorius IS, Van Rensburg P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference