Reference: Saltsman KA, et al. (1998) The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding. Yeast 14(8):733-46

Reference Help

Abstract


The C-terminal hydrophobic repeat (CTR) of heat shock transcription factor (HSF) has been proposed to regulate DNA binding by intramolecular interactions with the leucine zipper motifs present in the HSF trimerization domain. Schizosaccharomyces pombe provides a useful model organism for the study of the regulation of HSF DNA binding because, unlike Saccharomyces cerevisiae, S. pombe hsf is highly heat shock inducible for DNA binding and contains a clear homology to the CTR. We examined the role that the CTR plays in the regulation of S. pombe hsf by constructing isogenic strains bearing deletion and point mutations in the chromosomal copy of hsf. Surprisingly, we found that point mutation of key hydrophobic amino acids within the CTR, as well as full deletion of it, yielded factors that show normal binding at normal growth temperatures and full levels of heat-induced binding. Deletion of the CTR did, however, slightly lower the temperature required for maximal activation. In contrast, a large deletion of the C-terminus, which removes close to a third of the coding sequence, was deregulated and bound DNA at control temperature. Several of the deletion mutants were significantly reduced in their level of expression, yet they showed wild-type levels of DNA binding activity following heat shock. These experiments demonstrate that appropriate regulation of the DNA binding activity of S. pombe hsf is not solely dependent upon the CTR, and imply that a feedback mechanism exists that establishes proper levels of DNA binding following heat shock despite mutations that significantly alter levels of total hsf.

Reference Type
Journal Article
Authors
Saltsman KA, Prentice HL, Kingston RE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference