Reference: Furuchi T, et al. (2004) Functions of yeast helicase Ssl2p that are essential for viability are also involved in protection from the toxicity of adriamycin. Nucleic Acids Res 32(8):2578-85

Reference Help

Abstract


We have found that, in the yeast Saccharomyces cerevisiae, overexpression of the DNA helicase Ssl2p confers resistance to adriamycin. Ssl2p is involved, as a subunit of the basic transcription factor TFIIH, in the initiation of transcription and in nucleotide-excision repair (NER), and this helicase is essential for the survival of yeast cells. An examination of the relationship between the known functions of Ssl2p and adriamycin resistance indicated that overexpression of Ssl2p caused little or no increase in the rate of RNA synthesis and in NER. The absence of any involvement of NER in adriamycin resistance was supported by the finding that yeast cells that overexpressed the mutant form of Ssl2p that lacked the carboxy-terminal region, which is necessary for NER, remained resistant to adriamycin. When we examined the effects of overexpression in yeast of other mutant forms of Ssl2p with various deletions, we found that, of the 843 amino acids of Ssl2p, the entire amino acid sequence from position 81 to position 750 was necessary for adriamycin resistance. This region is identical to the region of Ssl2p that is necessary for the survival of yeast cells. Although this region contains helicase motifs, the overexpression of other yeast helicases, such as Rad3 and Sgs1, had little or no effect on adriamycin resistance, indicating that a mere increase in the intracellular level of helicases does not result in adriamycin resistance. Our results suggest that the functions of Ssl2p that are essential for yeast survival are also required for protection against adriamycin toxicity.

Reference Type
Journal Article
Authors
Furuchi T, Takahashi T, Tanaka S, Nitta K, Naganuma A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference