Reference: Hirschler-Laszkiewicz I, et al. (2003) Rrn3 becomes inactivated in the process of ribosomal DNA transcription. J Biol Chem 278(21):18953-9

Reference Help

Abstract


The human homologue of yeast Rrn3, a 72-kDa protein, is essential for ribosomal DNA (rDNA) transcription. Although the importance of Rrn3 function in rDNA transcription is well established, its mechanism of action has not been determined. It has been suggested that the phosphorylation of either yeast RNA polymerase I or mammalian Rrn3 regulates the formation of RNA polymerase I.Rrn3 complexes that can interact with the committed template. These and other reported differences would have implications with respect to the mechanism by which Rrn3 functions in transcription. For example, in the yeast rDNA transcription system, Rrn3 might function catalytically, but in the mammalian system it might function stoichiometrically. Thus, we examined the question as to whether Rrn3 functions catalytically or stoichiometrically. We report that mammalian Rrn3 becomes the limiting factor as transcription reactions proceed. Moreover, we demonstrate that Rrn3 is inactivated during the transcription reactions. For example, Rrn3 isolated from a reaction that had undergone transcription cannot activate transcription in a subsequent reaction. We also show that this inactivated Rrn3 not only dissociates from RNA polymerase I, but is not capable of forming a stable complex with RNA polymerase I. Our results indicate that Rrn3 functions stoichiometrically in rDNA transcription and that its ability to associate with RNA polymerase I is lost upon transcription.

Reference Type
Journal Article
Authors
Hirschler-Laszkiewicz I, Cavanaugh AH, Mirza A, Lun M, Hu Q, Smink T, Rothblum LI
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference