Reference: Johnston PD and Redfield AG (1981) Study of transfer ribonucleic acid unfolding by dynamic nuclear magnetic resonance. Biochemistry 20(14):3996-4006

Reference Help

Abstract


Nuclear magnetic resonance (NMR) measurements of proton exchange were performed on yeast tRNAPhe, and in much less detail on Escherichia coli tRNAfMet, over a range of Mg2+ concentrations and temperatures, at neutral pH and 0.1 M NaCl. The resonances studied were those of ring nitrogen protons, resonating between 10 and 15 ppm downfield from sodium 3-(trimethylsilyl)-1-propanesulfonate, which partake in hydrogen bonding between bases of secondary and tertiary pairs. Methods include saturation--recovery, line width, and real-time observation after a change to deuterated solvent. The relevant theory is briefly reviewed. We believe that most of the higher temperature rates reflect major unfolding of the molecule. For E. coli tRNAfMet, the temperature dependence of the rate for the U8--A14 resonance maps well onto previous optical T-jump studies for a transition assigned to tertiary melting. For yeast tRNAPhe, exchange rates of several resolved protons could be studied from 30 to 45 degrees C in zero Mg2+ concentration and had activation energies on the order of 40 kcal/mol. Initially, the tertiary structure melts, followed shortly by the acceptor stem. At high Mg2+ concentration, relatively few exchange rates are measurable below the general cooperative melt at about 60 degrees C; these are attributed to tertiary changes. Real-time observations suggest a change in the exchange mechanism at room temperature with a lower activation energy. The results are compared with those obtained by other methods directed toward assaying ribonucleic acid dynamics.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Johnston PD, Redfield AG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference