Reference: Schäfer A and Wolf DH (2005) Endoplasmic reticulum-associated protein quality control and degradation: screen for ERAD mutants after ethylmethane sulfonate mutagenesis. Methods Mol Biol 301:283-8

Reference Help

Abstract


Proteins destined for secretion in eukaryotic cells enter the endoplasmic reticulum (ER) in an unfolded state and are properly folded in this organelle and sent to their final destination. Misfolded or orphan proteins are retained in the ER by a quality control system, retrotranslocated into the cytosol and degraded. Soluble and membrane proteins were found to require a basic machinery for elimination. It is composed of (1) the E1 (ubiquitin activating), E2 (ubiquitin conjugating), and E3 (ubiquitin ligase) enzymes, which polyubiquitinate the substrate proteins during retrotranslocation; (2) the trimeric AAA-ATPase complex Cdc48-Ufd1-Npl4p, which liberates the polyubiquitinated proteins from the ER; and (3) the 26S proteasome, finally degrading the misfolded proteins. Additional components for degradation of soluble or membrane proteins may vary depending on the nature of malfolded proteins. It is therefore of utmost importance to gain insight into the different components of the ER protein quality control and degradation system required for the elimination of the substrate variety. Protein quality control of the ER and subsequent degradation are evolutionarily highly conserved from yeast to human. The yeast Saccharomyces cerevisiae is therefore an elegant model organism for a search of new components of the ER quality control and degradation machinery, because it is easily amenable to genetic and molecular biological experimentation. In this chapter, a genetic approach is presented, which leads to the isolation of mutants and to the identification of proteins involved in protein quality control and ER-associated degradation (ERAD). The method resides in ethylmethane sulfonate (EMS) mutagenesis of a yeast strain followed by screening for stabilization of soluble ERAD substrates, two mutated and consequently malfolded vacuolar enzymes, carboxypeptidase yscY (CPY*) and proteinase yscA (PrA*). Both malfolded proteins are retained in the ER lumen and become substrates of the ERAD machinery.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Schäfer A, Wolf DH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference