Reference: Rudinger-Thirion J and Giegé R (1999) The peculiar architectural framework of tRNASec is fully recognized by yeast AspRS. RNA 5(4):495-502

Reference Help

Abstract


The wild-type transcript of Escherichia coli tRNASec, characterized by a peculiar core architecture and a large variable region, was shown to be aspartylatable by yeast AspRS. Similar activities were found for tRNASec mutants with methionine, leucine, and tryptophan anticodons. The charging efficiency of these molecules was found comparable to that of a minihelix derived from tRNAAsp and is accounted for by the presence of the discriminator residue G73, which is a major aspartate identity determinant. Introducing the aspartate identity elements from the anticodon loop (G34, U35, C36, C38) into tRNASec transforms this molecule into an aspartate acceptor with kinetic properties identical to tRNAAsp. Expression of the aspartate identity set in tRNASec is independent of the size of its variable region. The functional study was completed by footprinting experiments with four different nucleases as structural probes. Protection patterns by AspRS of transplanted tRNASec and tRNAAsp were found similar. They are modified, particularly in the anticodon loop, upon changing the aspartate anticodon into that of methionine. Altogether, it appears that recognition of a tRNA by AspRS is more governed by the presence of the aspartate identity set than by the structural framework that carries this set.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rudinger-Thirion J, Giegé R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference