Reference: Salusjärvi L, et al. (2006) Transcription analysis of recombinant saccharomyces cerevisiae reveals novel responses to xylose. Appl Biochem Biotechnol 128(3):237-61

Reference Help

Abstract


Lignocellulosic biomass, rich in hexose and pentose sugars, is an attractive resource for commercially viable bioethanol production. Saccharomyces cerevisiae efficiently ferments hexoses but is naturally unable to utilize pentoses. Metabolic engineering of this yeast has resulted in strains capable of xylose utilization. However, even the best recombinant S. cerevisiae strains of today metabolize xylose with a low rate compared to glucose. This study compares the transcript profiles of an S. cerevisiae strain engineered to utilize xylose via the xylose reductase-xylitol dehydrogenase pathway in aerobic chemostat cultures with glucose or xylose as the main carbon source. Compared to the glucose culture, 125 genes were upregulated, whereas 100 genes were downregulated in the xylose culture. A number of genes encoding enzymes capable of nicotinamide adenine dinucleotide phosphate regeneration were upregulated in the xylose culture. Furthermore, xylose provoked increased activities of the pathways of acetyl-CoA synthesis and sterol biosynthesis. Notably, our results suggest that cells metabolizing xylose are not in a completely repressed or in a derepressed state either, indicating that xylose was recognized neither as a fermentable nor as a respirative carbon source. In addition, a considerable number of the changes observed in the gene expression between glucose and xylose samples were closely related to the starvation response.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Salusjärvi L, Pitkänen JP, Aristidou A, Ruohonen L, Penttilä M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference