Reference: Wagner A (1997) A computational genomics approach to the identification of gene networks. Nucleic Acids Res 25(18):3594-604

Reference Help

Abstract


To delineate the astronomical number of possible interactions of all genes in a genome is a task for which conventional experimental techniques are ill-suited. Sorely needed are rapid and inexpensive methods that identify candidates for interacting genes, candidates that can be further investigated by experiment. Such a method is introduced here for an important class of gene interactions, i.e., transcriptional regulation via transcription factors (TFs) that bind to specific enhancer or silencer sites. The method addresses the question: which of the genes in a genome are likely to be regulated by one or more TFs with known DNA binding specificity? It takes advantage of the fact that many TFs show cooperativity in transcriptional activation which manifests itself in closely spaced TF binding sites. Such 'clusters' of binding sites are very unlikely to occur by chance alone, as opposed to individual sites, which are often abundant in the genome. Here, statistical information about binding site clusters in the genome, is complemented by information about (i) known biochemical functions of the TF, (ii) the structure of its binding site, and (iii) function of the genes near the cluster, to identify genes likely to be regulated by a given transcription factor. Several applications are illustrated with the genome of Saccharomyces cerevisiae , and four different DNA binding activities, SBF, MBF, a sub-class of bHLH proteins and NBF. The technique may aid in the discovery of interactions between genes of known function, and the assignment of biological functions to putative open reading frames.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wagner A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference