Reference: Küssel P and Frasch M (1995) Pendulin, a Drosophila protein with cell cycle-dependent nuclear localization, is required for normal cell proliferation. J Cell Biol 129(6):1491-507

Reference Help

Abstract


We describe the dynamic intracellular localization of Drosophila Pendulin and its role in the control of cell proliferation. Pendulin is a new member of a superfamily of proteins which contains Armadillo (Arm) repeats and displays extensive sequence similarities with the Srp1 protein from yeast, with RAG-1 interacting proteins from humans, and with the importin protein from Xenopus. Almost the entire polypeptide chain of Pendulin is composed of degenerate tandem repeats of approximately 42 amino acids each. A short NH2-terminal domain contains adjacent consensus sequences for nuclear localization and cdc2 kinase phosphorylation. The subcellular distribution of Pendulin is dependent on the phase of cell cycle. During interphase, Pendulin protein is exclusively found in the cytoplasm of embryonic cells. At the transition between G2 and M-phase, Pendulin rapidly translocates into the nuclei where it is distributed throughout the nucleoplasm and the areas around the chromosomes. In the larval CNS, Pendulin is predominantly expressed in the dividing neuroblasts, where it undergoes the same cell cycle-dependent redistribution as in embryos. Pendulin is encoded by the oho31 locus and is expressed both maternally and zygotically. We describe the phenotypes of recessive lethal mutations in the oho31 gene that result in a massive decrease or loss of zygotic Pendulin expression. Hematopoietic cells of mutant larvae overproliferate and form melanotic tumors, suggesting that Pendulin normally acts as a blood cell tumor suppressor. In contrast, growth and proliferation in imaginal tissues are reduced and irregular, resulting in abnormal development of imaginal discs and the CNS of the larvae. This phenotype shows that Pendulin is required for normal growth regulation. Based on the structure of the protein, we propose that Pendulin may serve as an adaptor molecule to form complexes with other proteins. The sequence similarity with importin indicates that Pendulin may play a role in the nuclear import of karyophilic proteins and some of these may be required for the normal transmission and function of proliferative signals in the cells.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Küssel P, Frasch M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference