Reference: Nes WD, et al. (2002) Active site mapping and substrate channeling in the sterol methyltransferase pathway. J Biol Chem 277(45):42549-56

Reference Help

Abstract


Sterol methyltransferase (SMT) from Saccharomyces cerevisiae was purified from Escherichia coli BL21(DE3) and labeled with the mechanism-based irreversible inhibitor [3-3H]26,27-dehydrozymosterol (26,27-DHZ). A 5-kDa tryptic digest peptide fragment containing six acidic residues at positions Glu-64, Asp-65, Glu-68, Asp-79, Glu-82, and Glu-98 was determined to contain the substrate analog covalently attached to Glu-68 by Edman sequencing and radioanalysis using C18 reverse phase high performance liquid chromatography. Site-directed mutagenesis of the six acidic residues to leucine followed by activity assay of the purified mutants confirmed Glu-68 as the only residue to participate in affinity labeling. Equilibration studies indicated that zymosterol and 26,27-DHZ were bound to native and the E68L mutant with similar affinity, whereas S-adenosylmethionine was bound only to the native SMT, K(d) of about 2 microm. Analysis of the incubation products of the wild-type and six leucine mutants by GC-MS demonstrated that zymosterol was converted to fecosterol, 26,27-DHZ was converted to 26-homo-cholesta-8(9),23(24)E,26(26')-trienol as well as 26-homocholesta-8(9),26(26')-3beta,24beta-dienol, and in the case of D79L and E82L mutants, zymosterol was also converted to a new product, 24-methylzymosta-8,25(27)-dienol. The structures of the methylenecyclopropane ring-opened olefins were determined unambiguously by a combination of (1)H and (13)C NMR techniques. A K(m) of 15 microm, K(cat) of 8 x 10(-4) s(-1), and partition ratio of 0.03 was established for 26,27-DHZ, suggesting that the methylenecyclopropane can serve as a lead structure for a new class of antifungal agents. Taken together, partitioning that leads to loss of enzyme function is the result of 26,27-DHZ catalysis forming a highly reactive cationic intermediate that interacts with the enzyme in a region normally not occupied by the zymosterol high energy intermediate as a consequence of less than perfect control. Alternatively, the gain in enzyme function resulting from the production of a delta(25(27))-olefin originates with the leucine substitution directing substrate channeling along different reaction channels in a similar region at the active site.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Nes WD, Marshall JA, Jia Z, Jaradat TT, Song Z, Jayasimha P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference