Reference: Decatur WA, et al. (2007) Identifying effects of snoRNA-guided modifications on the synthesis and function of the yeast ribosome. Methods Enzymol 425:283-316

Reference Help

Abstract


The small nucleolar RNAs (snoRNAs) are associated with proteins in ribonucleoprotein complexes called snoRNPs ("snorps"). These complexes create modified nucleotides in preribosomal RNA and other RNAs and participate in nucleolytic cleavages of pre-rRNA. The various reactions occur in site-specific fashion, and the mature rRNAs are ultimately incorporated into cytoplasmic ribosomes. Most snoRNAs exist in two structural classes, and most members in each class are involved in nucleotide modification reactions. Guide snoRNAs in the "box C/D" class target methylation of the 2'-hydroxyl moiety, to form 2'-O-methylated nucleotides (Nm), whereas guide snoRNAs in the "box H/ACA" class target specific uridines for conversion to pseudouridine (Psi). The rRNA nucleotides modified in this manner are numerous, totaling approximately 100 in yeast and twice that number in humans. Although the chemistry of the modifications and the factors involved in their formation are largely explained, very little is known about the influence of the copious snoRNA-guided nucleotide modifications on rRNA activity and ribosome function. Among eukaryotic organisms the sites of rRNA modification and the corresponding guide snoRNAs have been best characterized in S. cerevisiae, making this a model organism for analyzing the consequences of modification. This chapter presents approaches to characterizing rRNA modification effects in yeast and includes strategies for evaluating a variety of specific rRNA functions. To aid in planning, a package of bioinformatics tools is described that enables investigators to correlate guide function with targeted ribosomal sites in several contexts. Genetic procedures are presented for depleting modifications at one or more rRNA sites, including ablation of all Nm or Psi modifications made by snoRNPs, and for introducing modifications at novel sites. Methods are also included for characterizing modification effects on cell growth, antibiotic sensitivity, rRNA processing, formation of various rRNP complexes, translation activity, and rRNA structure within the ribosome.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Review
Authors
Decatur WA, Liang XH, Piekna-Przybylska D, Fournier MJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference