Reference: Malecki M, et al. (2007) In vitro reconstitution and characterization of the yeast mitochondrial degradosome complex unravels tight functional interdependence. J Mol Biol 372(1):23-36

Reference Help

Abstract


The mitochondrial degradosome (mtEXO), the main RNA-degrading complex of yeast mitochondria, is composed of two subunits: an exoribonuclease encoded by the DSS1 gene and an RNA helicase encoded by the SUV3 gene. We expressed both subunits of the yeast mitochondrial degradosome in Escherichia coli, reconstituted the complex in vitro and analyzed the RNase, ATPase and helicase activities of the two subunits separately and in complex. The results reveal a very strong functional interdependence. For every enzymatic activity, we observed significant changes when the relevant protein was present in the complex, compared to the activity measured for the protein alone. The ATPase activity of Suv3p is stimulated by RNA and its background activity in the absence of RNA is reduced greatly when the protein is in the complex with Dss1p. The Suv3 protein alone does not display RNA-unwinding activity and the 3' to 5' directional helicase activity requiring a free 3' single-stranded substrate becomes apparent only when Suv3p is in complex with Dss1p. The Dss1 protein alone does have some basal exoribonuclease activity, which is not ATP-dependent, but in the presence of Suv3p the activity of the entire complex is enhanced greatly and is entirely ATP-dependent, with no residual activity observed in the absence of ATP. Such absolute ATP-dependence is unique among known exoribonuclease complexes. On the basis of these results, we propose a model in which the Suv3p RNA helicase acts as a molecular motor feeding the substrate to the catalytic centre of the RNase subunit.

Reference Type
Journal Article | Research Support, N.I.H., Intramural | Research Support, Non-U.S. Gov't
Authors
Malecki M, Jedrzejczak R, Stepien PP, Golik P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference