Reference: Zhao P, et al. (2007) Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochem Mol Biol 37(9):952-9

Reference Help

Abstract


Although quinone production and melanin formation are widely recognized as an integral part of the insect defense system, experimental evidence is lacking that the proteolytic activation of prophenoloxidase participates in the direct killing of invading microbes-active phenoloxidase generates quinones that polymerize to form melanin. Here, we report the antimicrobial effect of reactive intermediates produced in phenoloxidase-catalyzed reactions. After being treated with Manduca sexta phenoloxidase and dopamine, Escherichia coli and Bacillus subtilis ceased to grow, whereas the growth of Pichia pastoris was slightly affected. Microscopic analysis showed melanin deposition on cell surface, aggregation of bacteria, and loss of cell mobility. Viability tests revealed major decreases in the bacterial colony counts and, since the decrease remained significant after dispersion of the cell clumps, the reactive compounds were surmised to have aggregated and killed E. coli and B. subtilis cells. Under the experimental conditions, 60-94% of the Gram-negative bacteria (E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella typhimurium) and 52-99% of the Gram-positive bacteria (Bacillus cereus, B. subtilis, Micrococcus luteus, and Staphylococcus aureus) were killed. In the presence of phenoloxidase, dopamine or 5,6-dihydroxyindole (DHI) exhibited much higher antibacterial activity than L-dopa, N-acetyldopamine (NADA) or N-beta-alanyldopamine (NBAD) did, suggesting that DHI and its oxidation products were cytotoxic. The antifungal activity of DHI was detected using P. pastoris, Saccharomyces cerevisiae, Candida albicans, and Beauveria bassiana. These results established that prophenoloxidase activation is an integral component of the insect defense system involving a multitude of enzymes (e.g. proteinases, oxidases, and dopachrome conversion enzyme (DCE)), which immobilizes and kills invading microorganisms.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Zhao P, Li J, Wang Y, Jiang H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference