Reference: Ernst R, et al. (2008) A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5. Proc Natl Acad Sci U S A 105(13):5069-74

Reference Help

Abstract


The yeast ABC transporter Pdr5 plays a major role in drug resistance against a large number of structurally unrelated compounds. Although Pdr5 has been extensively studied, many important aspects regarding its molecular mechanisms remain unresolved. For example, a striking degeneration of conserved amino acid residues exists in the nucleotide binding domains (NBDs), but their functional relevance is unknown. Here, we performed in vivo and in vitro experiments to address the functional asymmetry of NBDs. It became evident by ATPase activity and drug transport studies that catalysis at only one of the two NBD composite sites is crucial for protein function. Furthermore, mutations of the proposed "catalytic carboxylate" (E1036) and the "catalytic dyad histidine" (H1068) were characterized. Although a mutation of the glutamate abolished ATPase activity and substrate transport, mutation of H1068 had no influence on ATP consumption. However, the H1068A mutation abolished rhodamine transport in vivo and in vitro, while leaving the transport of other substrates unaffected. By contrast to mammalian P-glycoprotein (P-gp), the ATPase activity of yeast Pdr5 is not stimulated by the addition of substrates, indicating that Pdr5 is an uncoupled ABC transporter that constantly hydrolyses ATP to ensure active substrate transport. Taken together, our data provide important insights into the molecular mechanism of Pdr5 and suggest that not solely the transmembrane domains dictate substrate selection.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ernst R, Kueppers P, Klein CM, Schwarzmueller T, Kuchler K, Schmitt L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference