Reference: Ivanov V, et al. (2008) Physiological heterogeneity of suspended microbial aggregates. Water Sci Technol 58(12):2435-41

Reference Help

Abstract


Suspended microbial aggregates, which are always in dynamic equilibrium with suspended cells and cells attached to surface, are very common structures in natural and engineering environmental systems. To study and design physiologically diverse suspended microbial aggregates the physiological classification of chemotrophic prokaryotes in 12 groups formed by four evolutionary periods (fermenting, anaerobic respiring, microaerophilic and facultative aerobic, aerobic prokaryotes) and three parallel lines (Gram-negative, Gram-positive Eubacteria, and Archaea) could be used. This type of physiological heterogeneity has been studied in microbial granules using fluorescence in situ hybridization, identification of 16S rRNA genes, and conferring the physiological properties from the description of the species. In spherical granules with diameter of 2.4 mm cells of aerobes were spread to the depth 0.55 mm below surface (85% of granule volume), facultative anaerobes dominated between the depths 0.55 mm and 0.85 mm (13% of granule volume), and anaerobes were concentrated at the depths from 0.85 to 1.0 mm (2% of granule volume). Percentages of aerobic, facultative anaerobic, and anaerobic species in granules, identified by 16S rRNA gene sequencing, were 69%, 9%, and 2% of total number of bacterial clones, respectively. Another type of physiological heterogeneity on the cellular level was due to the changes of cell physiological status during cell cycle. This type of heterogeneity has been studied in the populations of Escherichia coli, Bacillus megaterium, Saccharomyces cerevisiae, and Candida tropicalis. A significant proportion of cells from the exponential phase were killed after 10 min treatment with 1% solution of allyl alcohol, which specifically kills cells with high activity of alcohol dehydrogenase (ADH). However, there was no such effect in starved cell population. Percentage of cells with high activity ADH in microbial population can be used to monitor its physiological status. Physiological diversity of ecosystem may be due to mechanical mixing of cells from the different inflows. An example of such system is an ecosystem of aeration tank in municipal wastewater treatment plant. This ecosystem contains a mechanical mixture of dead anaerobic and live aerobic bacteria as well as attached and suspended cell aggregates supplied from anaerobic digester, raw sewage, and settling tank.

Reference Type
Journal Article
Authors
Ivanov V, Nejad SR, Yi S, Wang XH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference