Reference: Ling F, et al. (2009) Heteroduplex joint formation free of net topological change by Mhr1, a mitochondrial recombinase. J Biol Chem 284(14):9341-53

Reference Help

Abstract


Homologous pairing, an essential process for homologous recombination, is the formation of a heteroduplex joint by an invading single-stranded DNA tail and a complementary sequence within double-stranded DNA (dsDNA). The base rotation of the parental dsDNA, to switch from parental base pairs to heteroduplex ones with the invading single-stranded DNA, sterically requires vertical extension between adjacent base pairs, which inevitably induces untwisting of the dsDNA. RecA is a prototype of the RecA/Rad51/Dmc1 family proteins, which promote ATP-dependent homologous pairing in homologous DNA recombination in vivo, except in mitochondria. As predicted by the requirement for the untwisting, dsDNA bound to RecA is extended and untwisted, and homologous pairing by RecA in vitro is extensively stimulated by the negative supercoils of dsDNA substrates. D-loop formation in negatively supercoiled dsDNA, which serves as an assay for homologous pairing, is also catalyzed in an ATP-independent manner by proteins structurally unrelated to RecA, such as Mhr1. Mhr1 is required for yeast mitochondrial DNA recombination instead of RecA family proteins. Inconsistent with the topological requirements, tests for the effects of negative supercoils revealed that Mhr1 catalyzes homologous pairing with relaxed closed circular dsDNA much more efficiently than with negatively supercoiled dsDNA. Topological analyses indicated that neither the process nor the products of homologous pairing by Mhr1 involve a net topological change of closed circular dsDNA. This would be favorable for homologous recombination in mitochondria, where dsDNA is unlikely to be under topological stress toward unwinding. We propose a novel topological mechanism wherein Mhr1 induces untwisting without net topological change.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ling F, Yoshida M, Shibata T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference