Reference: Li BZ, et al. (2010) Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J Ind Microbiol Biotechnol 37(1):43-55

Reference Help

Abstract


Saccharomyces cerevisiae is widely applied in large-scale industrial bioethanol fermentation; however, little is known about the molecular responses of industrial yeast during large-scale fermentation processes. We investigated the global transcriptional responses of an industrial strain of S. cerevisiae during industrial continuous and fed-batch fermentation by oligonucleotide-based microarrays. About 28 and 62% of all genes detected showed differential gene expression during continuous and fed-batch fermentation, respectively. The overrepresented functional categories of differentially expressed genes in continuous fermentation overlapped with those in fed-batch fermentation. Downregulation of glycosylation as well as upregulation of the unfolded protein stress response was observed in both fermentation processes, suggesting dramatic changes of environment in endoplasmic reticulum during industrial fermentation. Genes related to ergosterol synthesis and genes involved in glycogen and trehalose metabolism were downregulated in both fermentation processes. Additionally, changes in the transcription of genes involved in carbohydrate metabolism coincided with the responses to glucose limitation during the early main fermentation stage in both processes. We also found that during the late main fermentation stage, yeast cells exhibited similar but stronger transcriptional changes during the fed-batch process than during the continuous process. Furthermore, repression of glycosylation has been suggested to be a secondary stress in the model proposed to explain the transcriptional responses of yeast during industrial fermentation. Together, these findings provide insights into yeast performance during industrial fermentation processes for bioethanol production.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Li BZ, Cheng JS, Qiao B, Yuan YJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference