Reference: Suetomi K, et al. (2010) Effects of Saccharomyces cerevisiae mec1, tel1, and mre11 mutations on spontaneous and methylmethane sulfonate-induced genome instability. Genes Genet Syst 85(1):1-8

Reference Help

Abstract


In eukaryotes, together with the Mre11/Rad50/Xrs2 (or Nbs1) complex, a family of related protein kinases (the ATM family) is involved in checkpoint activation in response to DNA double-strand breaks. In Saccharomyces cerevisiae, two members of this family, MEC1 and TEL1, have functionally redundant roles in DNA damage repair. Strains with mutations in their mec1 as well as mre11 genes are very sensitive to DNA damaging agents, show defective induction of damage-induced cell-cycle checkpoints, and defective damage-induced homologous recombination. However, the fact that both the mec1Delta and mre11Delta strains exhibit the spontaneous hyper-recombination phenotype is paradoxical in light of the homologous recombination defects in these strains. In this study, we constructed yeast mec1, tel1, and mre11 null mutations and characterized their genome stability properties. Spontaneous and methylmethane sulfonate (MMS)-induced point mutations, base-substitutions, and frameshifts occurred to an almost equal extent in the wild-type, mec1Delta, tel1Delta, and mre11Delta strains. Thus, Mec1, Tel1, and Mre11 do not play roles in the point mutation response. We then found that the mec1Delta, mre11Delta, and mec1Delta tel1Delta strains demonstrated increased rates of spontaneous loss of heterozygosity (LOH), which includes crossover, gene conversion, and chromosome loss, compared with the wild-type strain. In the tel1Delta strain, the rate of spontaneous LOH was as low as that in the wild-type strain. Finally, no induction of LOH by MMS was observed in the mec1Delta, mre11Delta, or mec1Delta tel1Delta strain; however, it was detected in the wild-type and tel1Delta strains upon exposure to MMS. The elevated level of spontaneous LOH but not MMS-induced LOH in the mec1Delta, mre11Delta, and mec1Delta tel1Delta strains suggests the presence of high levels of spontaneous recombinogenic DNA damage, which differs from the damage induced by MMS treatment, in these strains.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Suetomi K, Mochizuki M, Suzuki S, Yamamoto H, Yamamoto K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference