Reference: Murakami K, et al. (2006) Prooxidant action of rhodizonic acid: transition metal-dependent generation of reactive oxygen species causing the formation of 8-hydroxy-2'-deoxyguanosine formation in DNA. Toxicol In Vitro 20(6):910-4

Reference Help

Abstract


Rhodizonic acid, a six-membered cyclic hydroxyquinone, produced reactive oxygen species as a complex with transition metals. Addition of rhodizonic acid with ferrous ion caused an inactivation of aconitase the most sensitive enzyme to oxidative stress in permeabilized yeast cells. The iron-dependent inactivation of aconitase implies the rhodizonic acid/iron-mediated generation of reactive oxygen species. Spectrophotometric analysis of the interaction of rhodizonic acid with FeSO4 showed that addition of superoxide dismutase could inhibit the oxidation of rhodizonic acid, suggesting that reactive oxygen species produced from rhodizonic acid is superoxide radical. Rhodizonic acid further acted as a prooxidant causing a copper-dependent DNA damage. Treatment of DNA from plasmid pBR322 and calf thymus with rhodizonic acid plus copper caused strand scission and the formation of 8-hydroxy-2'-deoxyguanosine in DNA. Addition of catalase protected DNA from the rhodizonic acid-mediated strand scission, indicating that hydroxyl radical may participate in the DNA damage. Rhodizonic acid also showed a potent copper-reducing activity. These results indicate that copper ion reduced by rhodizonic acid may participate in the formation of superoxide radical that converts to hydrogen peroxide and hydroxyl radical. Other cyclic hydroxyquinones such as four-membered squaric acid and five-membered croconic acid did not show any prooxidant and reducing effects. Cytotoxic effects of tetrahydroquinone the precursor of rhodizonic acid may be related to the prooxidant properties of rhodizonic acid formed in cells.

Reference Type
Journal Article
Authors
Murakami K, Haneda M, Naruse M, Yoshino M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference