Reference: Rosenfeld AB and Racaniello VR (2010) Components of the multifactor complex needed for internal initiation by the IRES of hepatitis C virus in Saccharomyces cerevisiae. RNA Biol 7(5):596-605

Reference Help

Abstract


Interaction between the 40S ribosomal subunit and the IRES of hepatitis C virus (HCV) is thought to be independent of initiation proteins, while joining of the 60S ribosomal subunit, and initiation of translation is dependent upon components of the translation machinery. An established in vivo functional assay for internal initiation mediated by the HCV IRES was used to identify proteins needed for IRES dependent translation in Saccharomyces cerevisiae strains possessing alterations of the translation machinery. Internal initiation dependent upon the HCV IRES was abrogated in strains lacking eIF5B, and reduced in strains with altered eIF3, either lacking the Hcr1p subunit, a component of eIF3 not previously known to interact with HCV RNA, or possessing an amino acid change in the Rpg1p subunit. The HCV RNA-induced conformational change in the 40S subunit might affect positioning of eIF3 and lead to different interactions between the ribosome, eIF3, and the multifactor complex. HCV IRES dependent initiation was unaffected in strains in which the concentration of the initiating tRNA was reduced. Alteration of the δ subunit of eIF2B, which leads to inefficient recycling, or substitution of aspartic acid for serine 51 of eIF2α had no effect on internal initiation. Production of human Pkr inhibited HCV IRES dependent initiation in yeast. The synthesis of Pkr in yeast is known to result in high levels of eIF2α phosphorylation, increased Gcn4p synthesis, and reduced ribosomal protein production. These alterations may explain the effect of Pkr synthesis on HCV IRES dependent initiation in yeast.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Rosenfeld AB, Racaniello VR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference