Reference: Reijenga KA, et al. (2005) Training of yeast cell dynamics. FEBS J 272(7):1616-24

Reference Help

Abstract


In both industrial fermenters and in their natural habitats, microorganisms often experience an inhomogeneous and fluctuating environment. In this paper we mimicked one aspect of this nonideal behaviour by imposing a low and oscillating extracellular glucose concentration on nonoscillating suspensions of yeast cells. The extracellular dynamics changed the intracellular dynamics--which was monitored through NADH fluorescence--from steady to equally dynamic; the latter followed the extracellular dynamics at the frequency of glucose pulsing. Interestingly, the amplitude of the oscillation of the NADH fluorescence increased with time. This increase in amplitude was sensitive to inhibition of protein synthesis, and was due to a change in the cells rather than in the medium; the cell population was 'trained' to respond to the extracellular dynamics. To examine the mechanism behind this 'training', we subjected the cells to a low and constant extracellular glucose concentration. Seventy-five minutes of adaptation to a low and constant glucose concentration induced the same increase of the amplitude of the forced NADH oscillations as did the train of glucose pulses. Furthermore, 75 min of adaptation to a low (oscillating or continuous) glucose concentration decreased the K(M) of the glucose transporter from 26 mm to 3.5 mm. When subsequently the apparent K(M) was increased by addition of maltose, the amplitude of the forced oscillations dropped to its original value. This demonstrated that the increased affinity of glucose transport was essential for the training of the cells' dynamics.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Reijenga KA, Bakker BM, van der Weijden CC, Westerhoff HV
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference