Reference: Mattanovich D, et al. (2004) Stress in recombinant protein producing yeasts. J Biotechnol 113(1-3):121-35

Reference Help

Abstract


It is well established today that heterologous overexpression of proteins is connected with different stress reactions. The expression of a foreign protein at a high level may either directly limit other cellular processes by competing for their substrates, or indirectly interfere with metabolism, if their manufacture is blocked, thus inducing a stress reaction of the cell. Especially the unfolded protein response (UPR) in Saccharomyces cerevisiae (as well as some other yeasts) is well documented, and its role for the limitation of expression levels is discussed. One potential consequence of endoplasmatic reticulum folding limitations is the ER associated protein degradation (ERAD) involving retrotranslocation and decay in the cytosol. High cell density fermentation, the typical process design for recombinant yeasts, exerts growth conditions that deviate far from the natural environment of the cells. Thus, different environmental stresses may be exerted on the host. High osmolarity, low pH and low temperature are typical stress factors. Whereas the molecular pathways of stress responses are well characterized, there is a lack of knowledge concerning the impact of stress responses on industrial production processes. Accordingly, most metabolic engineering approaches conducted so far target at the improvement of protein folding and secretion, whereas only few examples of cell engineering against general stress sensitivity were published. Apart from discussing well-documented stress reactions of yeasts in the context of heterologous protein production, some more speculative topics like quorum sensing and apoptosis are addressed.

Reference Type
Journal Article | Review
Authors
Mattanovich D, Gasser B, Hohenblum H, Sauer M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference