Reference: Wei W, et al. (2002) Solvent kinetic isotope effects monitor changes in hydrogen bonding at the active center of yeast pyruvate decarboxylase concomitant with substrate activation: the substituent at position 221 can control the state of activation. Biochemistry 41(2):451-61

Reference Help

Abstract


Substrate activation of yeast pyruvate decarboxylase has been studied extensively in the authors' laboratories providing strong evidence that interaction of substrate with residue C221 provides the trigger, and the information is then transmitted along the C221 to H92 to E91 to W412 to G413 pathway to the 4'-amino nitrogen of the thiamin diphosphate cofactor. Earlier, it was found that the C221S substitution reduced the Hill coefficient from 2.0 to 0.8-0.9, the C221A substitution to 1.0, even though C221 is located on the beta domain some 20 A from the active center thiamin diphosphate cofactor, which is at the interface of the alpha and gamma domains. Here are reported experiments on the C221D/C222A and C221E/C222A variants, in which a negative charge is built onto the C221 side chain, to better mimic the effect of a pyruvate molecule covalently bonded to C221 as a thiohemiketal. Both variants were purified to an optimal activity of 70% of the wild-type enzyme, higher activity than that with the earlier uncharged substitutions at this position. The Hill coefficient for both variants is exactly 1.0. The deuterium solvent kinetic isotope effects (SKIE) on k(cat) for these variants were similar to that for the wild-type enzyme and the C221A/C222A variant, suggesting that starting with the first irreversible step (decarboxylation) the rate-limiting transition states are very similar for all of these enzyme forms. In contrast, such SKIE on k(cat)/K(m) are quite different for the C221A/C222A variant (0.62) than for the C221E/C222A or C221D/C222A variants (0.80-0.82), clearly indicating the effect of the C221 substitutions on transition states starting with the binding of the first substrate to the enzyme and terminating with the decarboxylation step. The results provide strong additional evidence for the involvement of residue C221 in the substrate activation process and suggest that the C221D (C221E) substitution shifts the enzyme into a conformation that resembles the activated conformation. A comparison with SKIE for the wild-type enzyme provides insight to changes in hydrogen bonding at the active center as a result of substrate activation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Wei W, Liu M, Jordan F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference