Reference: Mu Y, et al. (2002) Coupling of isoprenoid triflates with organoboron nucleophiles: synthesis and biological evaluation of geranylgeranyl diphosphate analogues. Bioorg Med Chem 10(5):1207-19

Reference Help

Abstract


The Suzuki coupling reaction has been used to introduce a methyl group derived from commercially available methylboronic acid into a vinyl triflate. This has led to a concise synthesis of all-trans-geranylgeraniol, with the key step being the palladium-catalyzed, silver-mediated methylation of triflate to give ethyl geranylgeranoate. This coupling protocol has also been used to produce the novel geranylgeranyl diphosphate (GGPP) analogue 3-phenyl-3-desmethylgeranylgeranyl diphosphate (3-PhGGPP, ). Our previously developed organocuprate coupling protocol has been used to introduce the cyclopropyl and tert-butyl moieties into the 3-position of vinyl triflate. The four GGPP analogues 3-vinyl-3-desmethylgeranylgeranyl diphosphate (3-vGGPP, ), 3-cyclopropyl-3-desmethylgeranylgeranyl diphosphate (3-cpGGPP, ), 3-tert-butyl-3-desmethyl-geranylgeranyl diphosphate (3-tbGGPP, ), and were then evaluated as potential inhibitors of recombinant yeast protein-geranylgeranyl transferase I (PGGTase I). The potential mechanism-based inhibitors 3-vGGPP and 3-cpGGPP did not exhibit time-dependent inactivation of PGGTase I. Instead, both analogues were alternative substrates, in accord with the interaction of the corresponding farnesyl analogues 3-vFPP and 3-cpFPP with PFTase. The tert-butyl and phenyl analogues were not substrates, but were instead competitive inhibitors of PGGTase I. Note that all four of the GGPP analogues were bound less tightly by the enzyme than the natural substrate, in contrast to the behavior of the 3-substituted FPP analogues.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Mu Y, Eubanks LM, Poulter CD, Gibbs RA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference