Reference: Kow YW and Dare A (2000) Detection of abasic sites and oxidative DNA base damage using an ELISA-like assay. Methods 22(2):164-9

Reference Help

Abstract


Reactive oxygen species produce a wide spectrum of DNA damage, including oxidative base damage and abasic (AP) sites. Many procedures are available for the quantification and detection of base damage and AP sites. However, either these procedures are laborious or the starting materials are difficult to obtain. A biotinylated aldehyde-specific reagent, ARP, has been shown to react specifically with the aldehyde group present in AP sites, resulting in biotin-tagged AP sites in DNA. The biotin-tagged AP sites can then be determined colorimetrically with an ELISA-like assay, using avidin/biotin-conjugated horseradish peroxidase as the indicator enzyme. The ARP assay is thus a simple, rapid, and sensitive method for the detection of AP sites in DNA. Furthermore, removal of damaged base by DNA N-glycosylases generates AP sites that can be measured by the ARP reagent. By coupling the ARP assay with either endonuclease III from Escherichia coli or 8-oxoguanine N-glycosylase (OGG1) from yeast, investigators can rapidly determine the amount of oxidative pyrimidine damage (endonuclease III-sensitive sites) or purine damage (OGG1-sensitive sites) in cellular DNA, respectively. An increased level of oxidative damage has been implicated in several age-related human diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease, as well as the aging process. The sensitivity and simplicity of the ARP assay thus make it a valuable method for investigators who are interested in estimating the level of oxidative DNA damage in cells and tissues derived from patients with various age-related diseases or cancers.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Kow YW, Dare A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference