Reference: König A, et al. (2000) Multimicrobial sensor using microstructured three-dimensional electrodes based on silicon technology. Anal Chem 72(9):2022-8

Reference Help

Abstract


Two microbial strains with different substrate spectra were immobilized separately within a single biosensor chip featuring four individually addressable platinum electrodes. These were sputtered onto the inner surface of four isolated pyramidal cavities ("containments") micromachined on a silicon wafer. The biosensor chip was integrated into a flow-through system to measure the oxygen consumption of the immobilized microorganisms in the presence of assimilable analytes. As a model system, a yeast for the determination of biochemical oxygen demand (BOD) and a strain capable of degrading polycyclic aromatic hydrocarbons (PAH) were chosen. It was shown that the simple and mass-producible containment sensor exhibits good performance data: lower detection limit 0.1 mg/L naphthalene and 1 mg/L sensor-BOD; calibration range up to 30 mg/L; precision 3-6%; response time 2-3 min; service life up to 40 days; shelf life at 4 degrees C 6 months. The versatility of the multimicrobial sensor was demonstrated by measuring ordinary municipal wastewater samples as well as various aqueous samples contaminated with PAH. The concept of a multimicrobial sensor not only enlarges the substrate spectrum for sum parameters such as BOD but leads to additional information which allows for a more differentiated and immediate knowledge of sample composition. Using chemometrical data analysis, the multimicrobial sensor lays a foundation for developing an "electronic tongue".

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
König A, Reul T, Harmeling C, Spener F, Knoll M, Zaborosch C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference