Reference: Nijkamp JF, et al. (2012) De novo detection of copy number variation by co-assembly. Bioinformatics 28(24):3195-202

Reference Help

Abstract


Motivation: Comparing genomes of individual organisms using next-generation sequencing data is, until now, mostly performed using a reference genome. This is challenging when the reference is distant and introduces bias towards the exact sequence present in the reference. Recent improvements in both sequencing read length and efficiency of assembly algorithms have brought direct comparison of individual genomes by de novo assembly, rather than through a reference genome, within reach.

Results: Here, we develop and test an algorithm, named Magnolya, that uses a Poisson mixture model for copy number estimation of contigs assembled from sequencing data. We combine this with co-assembly to allow de novo detection of copy number variation (CNV) between two individual genomes, without mapping reads to a reference genome. In co-assembly, multiple sequencing samples are combined, generating a single contig graph with different traversal counts for the nodes and edges between the samples. In the resulting 'coloured' graph, the contigs have integer copy numbers; this negates the need to segment genomic regions based on depth of coverage, as required for mapping-based detection methods. Magnolya is then used to assign integer copy numbers to contigs, after which CNV probabilities are easily inferred. The copy number estimator and CNV detector perform well on simulated data. Application of the algorithms to hybrid yeast genomes showed allotriploid content from different origin in the wine yeast Y12, and extensive CNV in aneuploid brewing yeast genomes. Integer CNV was also accurately detected in a short-term laboratory-evolved yeast strain.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Nijkamp JF, van den Broek MA, Geertman JM, Reinders MJ, Daran JM, de Ridder D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference