Reference: Kamisaka Y, et al. (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 97(16):7345-55

Reference Help

Abstract


Lipid production by Saccharomyces cerevisiae was improved by overexpression of the yeast diacylglycerol acyltransferase Dga1p lacking the N-terminal 29 amino acids (Dga1∆Np), which was previously found to be an active form in the ∆snf2 mutant. Overexpression of Dga1∆Np in the ∆snf2 mutant, however, did not increase lipid content as expected, which prompted us to search for a more suitable strain in which to study the role of Dga1∆Np in lipid accumulation. We found that the overexpression of Dga1∆Np in the ∆dga1 mutant effectively increased the lipid content up to about 45 % in the medium containing 10 % glucose. The high lipid content of the transformant was dependent on glucose concentration, nitrogen limitation, and active leucine biosynthesis. To better understand the effect of dga1 disruption on the ability of Dga1∆Np to stimulate lipid accumulation, the ∆dga1-1 mutant, in which the 3'-terminal 36 bp of the dga1 open reading frame (ORF) remained, and the ∆dga1-2 mutant, in which the 3'-terminal 36 bp were also deleted, were prepared with URA3 disruption cassettes. Surprisingly, the overexpression of Dga1∆Np in the ∆dga1-1 mutant had a lower lipid content than the original ∆dga1 mutant, whereas overexpression in the ∆dga1-2 mutant led to a high lipid content of about 45 %. These results indicated that deletion of the 3' terminal region of the dga1 ORF, rather than abrogation of genomic Dga1p expression, was crucial for the effect of Dga1∆Np on lipid accumulation. To investigate whether dga1 disruption affected gene expression adjacent to DGA1, we found that the overexpression of Esa1p together with Dga1∆Np in the ∆dga1 mutant reverted the lipid content to the level of the wild-type strain overexpressing Dga1∆Np. In addition, RT-qPCR analysis revealed that ESA1 mRNA expression in the ∆dga1 mutant was decreased compared to the wild-type strain at the early stages of culture, suggesting that lowered Esa1p expression is involved in the effect of dga1 disruption on Dga1∆Np-dependent lipid accumulation. These results provide a new strategy to engineer S. cerevisiae for optimal lipid production.

Reference Type
Journal Article
Authors
Kamisaka Y, Kimura K, Uemura H, Yamaoka M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference