Reference: Ishikawa K, et al. (2013) Cell growth control by stable Rbg2/Gir2 complex formation under amino acid starvation. Genes Cells 18(10):859-72

Reference Help

Abstract


The molecular fine-tuning mechanisms underlying adaptive responses to environmental stresses in eukaryotes remain largely unknown. Here, we report on a novel stress-induced cell growth control mechanism involving a highly conserved complex containing Rbg2 and Gir2 subunits, which are the budding yeast orthologs of human Drg2 and Dfrp2, respectively. We found that the complex is responsible for efficient cell growth under amino acid starvation. Using native PAGE analyses, we observed that, individually, Rbg2 and Gir2 were labile proteins. However, they formed a complex that stabilized each other, and this stability became significantly enhanced after amino acid starvation. We observed that the stabilization of the complex was strictly dependent on GDP or GTP binding to Rbg2. A point mutation (S77N) that inactivated nucleotide binding impaired formation of the complex and disrupted the stress-induced cell growth. Interestingly, the complex bound the translational activator Gcn1 in a dose-dependent manner according to the stress level, suggesting a dynamic association with the cellular translational machinery. We propose that the Rbg2/Gir2 complex is a modulator that maintains cellular homoeostasis, thus promoting the survival of eukaryotic organisms in stressful environments.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ishikawa K, Ito K, Inoue J, Semba K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference