Reference: Kim JJ, et al. (2013) CETN1 is a cancer testis antigen with expression in prostate and pancreatic cancers. Biomark Res 1(1):22

Reference Help

Abstract


Background: The Cancer Testis Antigens (CTAs) are a group of genes that are highly expressed in the normal testis and several types of cancer. Due to their restricted expression in normal adult tissues, CTAs have been attractive targets for immunotherapy and biomarker development. In this work, we discovered that Centrin 1 (CETN1) which is found in the centrosome of all eukaryotes, may be a member of this group and is highly expressed in prostate and pancreatic cancer. Three members of the centrin family of calcium binding proteins (CETN) are localized to the centrosome in all eukaryotes with CDC31 being the sole yeast homolog. CETN1 is a retrogene that probably arose from a retrotransposition of CETN2, an X-linked gene. A previous mouse study shows that CETN1 is expressed solely in the testis, while CETN2 is expressed in all organs.

Results: In this work, we show that CETN1 is a new member of the growing group of CTAs. Through the mining of publicly available microarray data, we discovered that human CETN1 expression but not CETN2 or CETN3 is restricted to the testis. In fact, CETN1 is actually down-regulated in testicular malignancies compared to normal testis. Using q-PCR, CETN1 expression is shown to be highly up-regulated in cancer of the prostate and in pancreatic xenografts. Unexpectedly however, CETN1 expression was virtually absent in various cell lines until they were treated with the DNA demethylation agent 5'AZA-2'Deoxycytidine (AZA) but showed no increased expression upon incubation with Histone deacetylase inhibitor Trichostatin-A (TSA) alone. Additionally, like most CTAs, CETN1 appears to be an intrinsically disordered protein which implies that it may occupy a hub position in key protein interaction networks in cancer. Neither CETN1 nor CETN2 could compensate for loss of CDC31 expression in yeast which is analogous to published data for CETN3.

Conclusions: This work suggests that CETN1 is a novel CTA with expression in cancer of the prostate and pancreas. In cell lines, the expression is probably regulated by promoter methylation, while the method of regulation in normal adult tissues remains unknown.

Reference Type
Journal Article
Authors
Kim JJ, Rajagopalan K, Hussain B, Williams BH, Kulkarni P, Mooney SM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference