Reference: Matsuda R, et al. (2014) Protein quality control systems associated with no-go and nonstop mRNA surveillance in yeast. Genes Cells 19(1):1-12

Reference Help

Abstract


Quality control systems eliminate aberrant proteins derived from aberrant mRNAs. Two E3 ubiquitin ligases, Ltn1 and Not4, are involved in proteasomal protein degradation coupled to translation arrest. Here, we evaluated nonstop and translation arrest products degraded in a poly(A) tail-independent manner. Ltn1 was found to degrade aberrant nonstop polypeptides derived from nonstop mRNA lacking a termination codon, but not peptidyl-tRNA, even in the absence of the ribosome dissociation complex Dom34:Hbs1. The receptor for activated C kinase (RACK1/ASC1) was identified as a factor required for nascent peptide-dependent translation arrest as well as Ltn1-dependent protein degradation. Both Not4 and Ltn1 were involved in the degradation of various arrest products in a poly(A) tail-independent manner. Furthermore, carboxyl terminus-truncated degradation intermediates of arrest products were stabilized in a cdc48-3 mutant defective in unfolding or the disassembly related to proteasomal degradation. Thus, we propose that stalled ribosomes may be dissociated into subunits and that peptidyl-tRNA on the 60S subunit is ubiquitinated by Ltn1 and Cdc48 is required for the degradation following release from tRNA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Matsuda R, Ikeuchi K, Nomura S, Inada T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference