Reference: Li X, et al. (2013) MultiFacTV: module detection from higher-order time series biological data. BMC Genomics 14 Suppl 4(Suppl 4):S2

Reference Help

Abstract


Background: Identifying modules from time series biological data helps us understand biological functionalities of a group of proteins/genes interacting together and how responses of these proteins/genes dynamically change with respect to time. With rapid acquisition of time series biological data from different laboratories or databases, new challenges are posed for the identification task and powerful methods which are able to detect modules with integrative analysis are urgently called for. To accomplish such integrative analysis, we assemble multiple time series biological data into a higher-order form, e.g., a gene × condition × time tensor. It is interesting and useful to develop methods to identify modules from this tensor.

Results: In this paper, we present MultiFacTV, a new method to find modules from higher-order time series biological data. This method employs a tensor factorization objective function where a time-related total variation regularization term is incorporated. According to factorization results, MultiFacTV extracts modules that are composed of some genes, conditions and time-points. We have performed MultiFacTV on synthetic datasets and the results have shown that MultiFacTV outperforms existing methods EDISA and Metafac. Moreover, we have applied MultiFacTV to Arabidopsis thaliana root(shoot) tissue dataset represented as a gene × condition × time tensor of size 2395 × 9 × 6(3454 × 8 × 6), to Yeast dataset and Homo sapiens dataset represented as tensors of sizes 4425 × 6 × 6 and 2920 × 14 × 9 respectively. The results have shown that MultiFacTV indeed identifies some interesting modules in these datasets, which have been validated and explained by Gene Ontology analysis with DAVID or other analysis.

Conclusion: Experimental results on both synthetic datasets and real datasets show that the proposed MultiFacTV is effective in identifying modules for higher-order time series biological data. It provides, compared to traditional non-integrative analysis methods, a more comprehensive and better view on biological process since modules composed of more than two types of biological variables could be identified and analyzed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Li X, Ye Y, Ng M, Wu Q
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference