Reference: Ban DK and Paul S (2014) Zinc oxide nanoparticles modulates the production of β-glucosidase and protects its functional state under alcoholic condition in Saccharomyces cerevisiae. Appl Biochem Biotechnol 173(1):155-66

Reference Help

Abstract


In the present investigation, we have investigated the effect of zinc oxide nanoparticles (ZnONP) on the production of β-glucosidase (BGL) in Saccharomyces cerevisiae under various conditions. ZnONP was synthesized chemically and characterized using various standard techniques. The results revealed that yeast culture administered with 5 mM ZnONP enhanced the intracellular BGL activity up to 28 % compared to control with simultaneous growth of cells. However, at a higher dose of ZnONP (10 and 15 mM), both the activity of the enzyme and yeast growth was dropped. When yeast cells were grown in alcoholic medium (2, 5, and 10 % ethanol), the growth was found inhibited with substantial reduction of intracellular BGL activity. Interestingly, the administration of ZnONP further inhibited the cell growth, however, suppressed the alcoholic effect on enzyme activity. Moreover, under the same condition, ZnONP enhanced the biological activity of the enzyme in cells, indicated a higher yield of BGL production. When the mechanism of ZnONP-mediated cell growth inhibition was investigated, N-acetylcysteine (NAC)-based cell growth study proved that reactive oxygen species (ROS) was not the sole cell death mechanism induced by ZnONP, indicating a second mechanism of cell death. Our findings provide a new insight on the potential application of ZnONP as an external supplement to enhance the active production of BGL like important industrial enzyme in S. cerevisiae in both normal and alcohol stressed condition as well as to produce baker’s yeast in higher amount.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ban DK, Paul S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference