Reference: Sugiyama M, et al. (2014) Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 80(11):3488-95

Reference Help

Abstract


Improvement of the lactic acid resistance of the yeast Saccharomyces cerevisiae is important for the application of the yeast in industrial production of lactic acid from renewable resources. However, we still do not know the precise mechanisms of the lactic acid adaptation response in yeast and, consequently, lack effective approaches for improving its lactic acid tolerance. To enhance our understanding of the adaptation response, we screened for S. cerevisiae genes that confer enhanced lactic acid resistance when present in multiple copies and identified the transcriptional factor Haa1 as conferring resistance to toxic levels of lactic acid when overexpressed. The enhanced tolerance probably results from increased expression of its target genes. When cells that expressed Haa1 only from the endogenous promoter were exposed to lactic acid stress, the main subcellular localization of Haa1 changed from the cytoplasm to the nucleus within 5 min. This nuclear accumulation induced upregulation of the Haa1 target genes YGP1, GPG1, and SPI1, while the degree of Haa1 phosphorylation observed under lactic acid-free conditions decreased. Disruption of the exportin gene MSN5 led to accumulation of Haa1 in the nucleus even when no lactic acid was present. Since Msn5 was reported to interact with Haa1 and preferentially exports phosphorylated cargo proteins, our results suggest that regulation of the subcellular localization of Haa1, together with alteration of its phosphorylation status, mediates the adaptation to lactic acid stress in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Sugiyama M, Akase SP, Nakanishi R, Horie H, Kaneko Y, Harashima S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference