Reference: Low YS, et al. (2014) Kinetochore genes are required to fully activate secretory pathway expansion in S. cerevisiae under induced ER stress. Mol Biosyst 10(7):1790-802

Reference Help

Abstract


Basal ER stress occurs when proteins misfold in normal physiological conditions and are corrected by the unfolded protein response (UPR). Elevated ER stress occurs when misfolding is refractory as found in numerous diseases such as atherosclerosis, Type II diabetes and some cancers. In elevated ER stress it is unclear whether cells utilise the same or different networks of genes as in basal levels of ER stress. To probe this question, we used secretory pathway reporters Yip3p-GFP, Erv29p-GFP, Orm2p-GFP and UPREpr-GFP placed on the yeast deletion mutant array (DMA) genetic background. The reporter's expression levels, measured by automated microscopy, at basal versus elevated ER stress induced by the over-expression of CPY* were compared. A novel group of kinetochore genes (CTF19 complex) were found to be uniquely required for full induction of all four ER stress reporters in elevated stress. A follow-up reporter screen was developed by mating the ctf19Δ kinetochore gene deletion strain into the genome-wide XXXp-GFP tagged library then testing with over-expressed CPY*. This screen identified Bcy1p and Bfr1p as possible signalling points that down-regulate the UPR and secretory pathway when kinetochore proteins are absent under elevated stress conditions. Bfr1p appears to be a checkpoint that monitors the integrity of kinetochores at increased levels of ER stress. This study concludes that functional kinetochores are required for full activation of the secretory pathway in elevated ER stress and that the responses to basal and elevated levels of ER stress require different networks of genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Low YS, Bircham PW, Maass DR, Atkinson PH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference