Reference: Hull CM, et al. (2014) Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock. Biotechnol Biofuels 7(1):133

Reference Help

Abstract


Background: Genetically customised Saccharomyces cerevisiae that can produce ethanol and additional bio-based chemicals from sustainable agro-industrial feedstocks (for example, residual plant biomass) are of major interest to the biofuel industry. We investigated the microbial biorefinery concept of ethanol and squalene co-production using S. cerevisiae (strain YUG37-ERG1) wherein ERG1 (squalene epoxidase) transcription is under the control of a doxycycline-repressible tet0 7 -CYC1 promoter. The production of ethanol and squalene by YUG37-ERG1 grown using agriculturally sourced grass juice supplemented with doxycycline was assessed.

Results: Use of the tet0 7 -CYC1 promoter permitted regulation of ERG1 expression and squalene accumulation in YUG37-ERG1, allowing us to circumvent the lethal growth phenotype seen when ERG1 is disrupted completely. In experiments using grass juice feedstock supplemented with 0 to 50 μg doxycycline mL(-1), YUG37-ERG1 fermented ethanol (22.5 [±0.5] mg mL(-1)) and accumulated the highest squalene content (7.89 ± 0.25 mg g(-1) dry biomass) and yield (18.0 ± 4.18 mg squalene L(-1)) with supplements of 5.0 and 0.025 μg doxycycline mL(-1), respectively. Grass juice was found to be rich in water-soluble carbohydrates (61.1 [±3.6] mg sugars mL(-1)) and provided excellent feedstock for growth and fermentation studies using YUG37-ERG1.

Conclusion: Residual plant biomass components from crop production and rotation systems represent possible substrates for microbial fermentation of biofuels and bio-based compounds. This study is the first to utilise S. cerevisiae for the co-production of ethanol and squalene from grass juice. Our findings underscore the value of the biorefinery approach and demonstrate the potential to integrate microbial bioprocess engineering with existing agriculture.

Reference Type
Journal Article
Authors
Hull CM, Loveridge EJ, Rolley NJ, Donnison IS, Kelly SL, Kelly DE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference