Reference: You ZH, et al. (2014) Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. BMC Bioinformatics 15 Suppl 15(Suppl 15):S9

Reference Help

Abstract


Background: Identifying protein-protein interactions (PPIs) is essential for elucidating protein functions and understanding the molecular mechanisms inside the cell. However, the experimental methods for detecting PPIs are both time-consuming and expensive. Therefore, computational prediction of protein interactions are becoming increasingly popular, which can provide an inexpensive way of predicting the most likely set of interactions at the entire proteome scale, and can be used to complement experimental approaches. Although much progress has already been achieved in this direction, the problem is still far from being solved and new approaches are still required to overcome the limitations of the current prediction models.

Results: In this work, a sequence-based approach is developed by combining a novel Multi-scale Continuous and Discontinuous (MCD) feature representation and Support Vector Machine (SVM). The MCD representation gives adequate consideration to the interactions between sequentially distant but spatially close amino acid residues, thus it can sufficiently capture multiple overlapping continuous and discontinuous binding patterns within a protein sequence. An effective feature selection method mRMR was employed to construct an optimized and more discriminative feature set by excluding redundant features. Finally, a prediction model is trained and tested based on SVM algorithm to predict the interaction probability of protein pairs.

Conclusions: When performed on the yeast PPIs data set, the proposed approach achieved 91.36% prediction accuracy with 91.94% precision at the sensitivity of 90.67%. Extensive experiments are conducted to compare our method with the existing sequence-based method. Experimental results show that the performance of our predictor is better than several other state-of-the-art predictors, whose average prediction accuracy is 84.91%, sensitivity is 83.24%, and precision is 86.12%. Achieved results show that the proposed approach is very promising for predicting PPI, so it can be a useful supplementary tool for future proteomics studies. The source code and the datasets are freely available at http://csse.szu.edu.cn/staff/youzh/MCDPPI.zip for academic use.

Reference Type
Evaluation Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
You ZH, Zhu L, Zheng CH, Yu HJ, Deng SP, Ji Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference