Reference: Hu X, et al. (2015) Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). J Proteomics 115:81-92

Reference Help

Abstract


Unlabelled: We recently demonstrated that chloroplast small HSP26 (sHSP26) is abundant in maize leaves under heat stress and potentially involved in maize heat tolerance. However, it largely remains unclear how sHSP26 functions in maize under heat stress. Here, 2-DE-based proteomics, RNA interference (RNAi), co-immunoprecipitation (Co-IP) and yeast two-hybrid (Y2H) were used to reveal chloroplast proteins interacting with sHSP26 and how sHSP26 functions under heat stress. After the silencing of sHSP26, a total of 45 protein spots from isolated protoplasts were greatly changed in abundance, of which 33 spots are chloroplastic. Co-IP revealed that nine proteins possibly associated with sHSP26. Y2H demonstrated that six chloroplast proteins interact with sHSP26 under heat stress. In particular, four proteins, including ATP synthase subunit β, chlorophyll a-b binding protein, oxygen-evolving enhancer protein 1 and photosystem I reaction center subunit IV, strongly interacted with sHSP26 and their abundance greatly declined after RNAi of sHSP26 under heat stress. In addition, H2O2 accumulation in the chloroplasts significantly increased the expression of sHSP26, and the suppression of sHSP26 expression significantly reduced the O2 evolution rate of photosystem II under heat stress. Overall, these findings demonstrate the relevance of sHSP26 in protecting maize chloroplasts under heat stress.

Biological significance: Maize is one of the most important crops worldwide. Frequent heat stress reduces significantly the yield and quality of maize. Our results demonstrated that sHSP26 improved maize chloroplast performance under heat stress by interacting with specific proteins. These findings are useful for understanding the mechanism of heat stress response and heat-tolerant molecular breeding in maize.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hu X, Yang Y, Gong F, Zhang D, Zhang L, Wu L, Li C, Wang W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference