Reference: Tang SY, et al. (2015) Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase. Anal Bioanal Chem 407(12):3437-48

Reference Help

Abstract


Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tang SY, Yi P, Soffe R, Nahavandi S, Shukla R, Khoshmanesh K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference