Reference: Saito K, et al. (2015) Inhibiting K63 polyubiquitination abolishes no-go type stalled translation surveillance in Saccharomyces cerevisiae. PLoS Genet 11(4):e1005197

Reference Help

Abstract


Incidental ribosome stalling during translation elongation is an aberrant phenomenon during protein synthesis and is subjected to quality control by surveillance systems, in which mRNA and a nascent protein are rapidly degraded. Their detailed molecular mechanisms as well as responsible factors for these processes are beginning to be understood. However, the initial processes for detecting stalled translation that result in degradation remain to be determined. Among the factors identified to date, two E3 ubiquitin ligases have been reported to function in distinct manners. Because ubiquitination is one of the most versatile of cellular signals, these distinct functions of E3 ligases suggested diverse ubiquitination pathways during surveillance for stalled translation. In this study, we report experimental evidences for a unique role of non-proteasomal K63 polyubiquitination during quality control for stalled translation. Inhibiting K63 polyubiquitination by expressing a K63R ubiquitin mutation in Saccharomyces cerevisiae cells markedly abolished the quality control responses for stalled translation. More detailed analyses indicated that the effects of K63R mutants were independent of the proteasome and that K63 polyubiquitination is dependent on Hel2, one of the E3 ligases. Moreover, a K63R ubiquitin mutant barely inhibited the quality control pathway for nonstop translation, indicating distinct mechanisms for these highly related quality control pathways. Our results suggest that non-proteasomal K63 polyubiquitination is included in the initial surveillance process of stalled translation and presumably triggers protein degradation steps upon translational stall. These findings provide crucial information regarding the detailed molecular mechanisms for the initial steps involved in quality control systems and their classification.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Saito K, Horikawa W, Ito K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference