Reference: Couoh-Cardel S, et al. (2015) Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector. J Biol Chem 290(46):27959-71

Reference Help

Abstract


The membrane sector (Vo) of the proton pumping vacuolar ATPase (V-ATPase, V1Vo-ATPase) from Saccharomyces cerevisiae was purified to homogeneity, and its structure was characterized by EM of single molecules and two-dimensional crystals. Projection images of negatively stained Vo two-dimensional crystals showed a ring-like structure with a large asymmetric mass at the periphery of the ring. A cryo-EM reconstruction of Vo from single-particle images showed subunits a and d in close contact on the cytoplasmic side of the proton channel. A comparison of three-dimensional reconstructions of free Vo and Vo as part of holo V1Vo revealed that the cytoplasmic N-terminal domain of subunit a (aNT) must undergo a large conformational change upon enzyme disassembly or (re)assembly from Vo, V1, and subunit C. Isothermal titration calorimetry using recombinant subunit d and aNT revealed that the two proteins bind each other with a Kd of ~5 μm. Treatment of the purified Vo sector with 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] resulted in selective release of subunit d, allowing purification of a VoΔd complex. Passive proton translocation assays revealed that both Vo and VoΔd are impermeable to protons. We speculate that the structural change in subunit a upon release of V1 from Vo during reversible enzyme dissociation plays a role in blocking passive proton translocation across free Vo and that the interaction between aNT and d seen in free Vo functions to stabilize the Vo sector for efficient reassembly of V1Vo.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Couoh-Cardel S, Milgrom E, Wilkens S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference