Reference: Teoh ST, et al. (2016) Random sample consensus combined with partial least squares regression (RANSAC-PLS) for microbial metabolomics data mining and phenotype improvement. J Biosci Bioeng 122(2):168-75

Reference Help

Abstract


In recent years, the advent of high-throughput omics technology has made possible a new class of strain engineering approaches, based on identification of possible gene targets for phenotype improvement from omic-level comparison of different strains or growth conditions. Metabolomics, with its focus on the omic level closest to the phenotype, lends itself naturally to this semi-rational methodology. When a quantitative phenotype such as growth rate under stress is considered, regression modeling using multivariate techniques such as partial least squares (PLS) is often used to identify metabolites correlated with the target phenotype. However, linear modeling techniques such as PLS require a consistent metabolite-phenotype trend across the samples, which may not be the case when outliers or multiple conflicting trends are present in the data. To address this, we proposed a data-mining strategy that utilizes random sample consensus (RANSAC) to select subsets of samples with consistent trends for construction of better regression models. By applying a combination of RANSAC and PLS (RANSAC-PLS) to a dataset from a previous study (gas chromatography/mass spectrometry metabolomics data and 1-butanol tolerance of 19 yeast mutant strains), new metabolites were indicated to be correlated with tolerance within certain subsets of the samples. The relevance of these metabolites to 1-butanol tolerance were then validated from single-deletion strains of corresponding metabolic genes. The results showed that RANSAC-PLS is a promising strategy to identify unique metabolites that provide additional hints for phenotype improvement, which could not be detected by traditional PLS modeling using the entire dataset.

Reference Type
Journal Article | Validation Study
Authors
Teoh ST, Kitamura M, Nakayama Y, Putri S, Mukai Y, Fukusaki E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference