Reference: Wu F, et al. (2016) Recombinant acetylated trypsin demonstrates superior stability and higher activity than commercial products in quantitative proteomics studies. Rapid Commun Mass Spectrom 30(8):1059-66

Reference Help

Abstract


Rationale: Trypsin is an important digestive enzyme in peptide sample preparation for proteomics. It digests proteins at the C-terminal of Arg or Lys residues. The majority of commercial products are obtained from animal sources. In a previous study, we reported the production process for recombinant trypsin (r-trypsin) and acetylated trypsin (r-Ac-trypsin). In this paper, we want to evaluate whether the r-trypsin and r-Ac-trypsin are suitable for proteomics research.

Methods: The trypsins used in this research were first normalized to the same concentration and used for further evaluation. The stability and buffer compatibility (2M urea, 0.1% SDS and 10% acetonitrile) were compared and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The digestion efficiency and specificity were compared based on a simple protein substrate, human serum albumin (HSA) and a complex proteomic sample, yeast lysate. The acquisition of proteomics data was achieved by ultra-high performance liquid chromatography (UPLC) connected to an LTQ Orbitrap Velos mass spectrometer.

Results: r-Ac-trypsin demonstrated similar tolerance to 2 M urea and 10% acetonitrile but weaker 0.1% SDS tolerance than commercial trypsins. Based on simple protein sample HSA, the activity and specificity of r-Ac-trypsin were similar to that of commercial trypsins. However, it demonstrated superior activity and specificity on complicated samples like yeast lysate. More interestingly, the newly developed r-Ac-trypsin was more resistant to autolysis, which enabled more complete digestion of proteomic samples.

Conclusions: The r-Ac-trypsin described here is a recombinant product. In addition it showed similar or superior properties such as stability activity and specificity to commercial products. It can be used in peptide sample preparation in proteomics studies.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wu F, Zhao M, Zhang Y, Su N, Xiong Z, Xu P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference