Reference: Leung A, et al. (2016) Unique yeast histone sequences influence octamer and nucleosome stability. FEBS Lett 590(16):2629-38

Reference Help

Abstract


Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120 K121 K125 ) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast-to-human changes at these positions render yeast histones amenable to well-established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.

Reference Type
Letter
Authors
Leung A, Cheema M, González-Romero R, Eirin-Lopez JM, Ausió J, Nelson CJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference