Reference: Espinar-Marchena FJ, et al. (2016) Role of the yeast ribosomal protein L16 in ribosome biogenesis. FEBS J 283(16):2968-85

Reference Help

Abstract


Most ribosomal proteins play essential roles in ribosome synthesis and function. In this study, we have analysed the contribution of yeast ribosomal protein L16 to ribosome biogenesis. We show that in vivo depletion of the essential L16 protein results in a deficit in 60S subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability and rapid turnover of early and intermediate pre-60S particles, as evidenced by the reduced steady-state levels of 27SBS and 7SL /S pre-rRNA, and the low amounts of de novo synthesized 27S pre-rRNA and 25S rRNA. Additionally, depletion of L16 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we show that L16 assembles in the nucleolus and binds to early 90S preribosomal particles. Many evolutionarily conserved ribosomal proteins possess extra eukaryote-specific amino- or carboxy-terminal extensions and/or internal loops. Here, we have also investigated the role of the eukaryote-specific carboxy-terminal extension of L16. Progressive truncation of this extension recapitulates, albeit to a lesser extent, the growth and ribosome biogenesis defects of the L16 depletion. We conclude that L16 assembly is a prerequisite to properly stabilize rRNA structures within early pre-60S particles, thereby favouring efficient 27S pre-rRNA processing within the internal transcribed spacer 1 at sites A3 and B1 . Upon depletion of L16, the lack of this stabilization aborts early pre-60S particle assembly and subjects these intermediates to turnover.

Reference Type
Journal Article
Authors
Espinar-Marchena FJ, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Pevida A, Babiano R, de la Cruz J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference