Reference: Powers BL, et al. (2017) A Substrate Trapping Method for Identification of Direct Cdc14 Phosphatase Targets. Methods Mol Biol 1505:119-132

Reference Help

Abstract


Mitotic exit requires the inactivation of cyclin-dependent kinase (Cdk) activity and reversal of Cdk-mediated phosphorylation events by protein phosphatases. In Saccharomyces cerevisiae the mitotic exit network (MEN) leads to activation and dispersal of the Cdc14 phosphatase throughout the cell following successful chromosome segregation. MEN-released Cdc14 is required for both full Cdk inactivation and dephosphorylation of Cdk substrates. While Cdc14 originally was thought to act broadly on mitotic Cdk substrates, recent biochemical studies revealed that Cdc14 possesses a strong preference for a subset of Cdk phosphorylation sites. This intrinsic specificity appears well conserved across fungi and animals. Identifying the direct physiological substrates of Cdc14 is an important step in fully understanding its biological functions, both in yeast and other species. Despite its strict specificity for phosphoserine Cdk sites, Cdc14 is structurally and mechanistically related to protein tyrosine phosphatases (PTPs). Like other PTPs, mutation of catalytic residues in the Cdc14 active site creates an inactive enzyme that retains high affinity substrate binding. Here we describe a protocol for using such "substrate trap" variants to biochemically isolate and detect direct substrates by co-immunopurification. The protocol is written for use in S. cerevisiae, but should be easily adaptable to other research organisms.

Reference Type
Journal Article
Authors
Powers BL, Hall H, Charbonneau H, Hall MC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference