Reference: Wei X and Zhang J (2017) The Genomic Architecture of Interactions Between Natural Genetic Polymorphisms and Environments in Yeast Growth. Genetics 205(2):925-937

Reference Help

Abstract


Gene-environment interaction (G×E) refers to the phenomenon that the same mutation has different phenotypic effects in different environments. Although quantitative trait loci (QTLs) exhibiting G×E have been reported, little is known about the general properties of G×E, and those of its underlying QTLs. Here, we use the genotypes of 1005 segregants from a cross between two Saccharomyces cerevisiae strains, and the growth rates of these segregants in 47 environments, to identify growth rate QTLs (gQTLs) in each environment, and QTLs that have different growth effects in each pair of environments (g×eQTLs) . The average number of g×eQTLs identified between two environments is 0.58 times the number of unique gQTLs identified in these environments, revealing a high abundance of G×E. Eighty-seven percent of g×eQTLs belong to gQTLs, supporting the practice of identifying g×eQTLs from gQTLs. Most g×eQTLs identified from gQTLs have concordant effects between environments, but, as the effect size of a mutation in one environment enlarges, the probability of antagonism in the other environment increases. Antagonistic g×eQTLs are enriched in dissimilar environments. Relative to gQTLs, g×eQTLs tend to occur at intronic and synonymous sites. The gene ontology (GO) distributions of gQTLs and g×eQTLs are significantly different, as are those of antagonistic and concordant g×eQTLs. Simulations based on the yeast data showed that ignoring G×E causes substantial missing heritability. Together, our findings reveal the genomic architecture of G×E in yeast growth, and demonstrate the importance of G×E in explaining phenotypic variation and missing heritability.

Reference Type
Journal Article
Authors
Wei X, Zhang J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference