Reference: Chai F, et al. (2017) Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Microb Cell Fact 16(1):54

Reference Help

Abstract


Background: Due to excellent performance in antitumor, antioxidation, antihypertension, antiatherosclerotic and antidepressant activities, crocetin, naturally exists in Crocus sativus L., has great potential applications in medical and food fields. Microbial production of crocetin has received increasing concern in recent years. However, only a patent from EVOVA Inc. and a report from Lou et al. have illustrated the feasibility of microbial biosynthesis of crocetin, but there was no specific titer data reported so far. Saccharomyces cerevisiae is generally regarded as food safety and productive host, and manipulation of key enzymes is critical to balance metabolic flux, consequently improve output. Therefore, to promote crocetin production in S. cerevisiae, all the key enzymes, such as CrtZ, CCD and ALD should be engineered combinatorially.

Results: By introduction of heterologous CrtZ and CCD in existing β-carotene producing strain, crocetin biosynthesis was achieved successfully in S. cerevisiae. Compared to culturing at 30 °C, the crocetin production was improved to 223 μg/L at 20 °C. Moreover, an optimal CrtZ/CCD combination and a titer of 351 μg/L crocetin were obtained by combinatorial screening of CrtZs from nine species and four CCDs from Crocus. Then through screening of heterologous ALDs from Bixa orellana (Bix_ALD) and Synechocystis sp. PCC6803 (Syn_ALD) as well as endogenous ALD6, the crocetin titer was further enhanced by 1.8-folds after incorporating Syn_ALD. Finally a highest reported titer of 1219 μg/L at shake flask level was achieved by overexpression of CCD2 and Syn_ALD. Eventually, through fed-batch fermentation, the production of crocetin in 5-L bioreactor reached to 6278 μg/L, which is the highest crocetin titer reported in eukaryotic cell.

Conclusions: Saccharomyces cerevisiae was engineered to achieve crocetin production in this study. Through combinatorial manipulation of three key enzymes CrtZ, CCD and ALD in terms of screening enzymes sources and regulating protein expression level (reaction temperature and copy number), crocetin titer was stepwise improved by 129.4-fold (from 9.42 to 1219 μg/L) as compared to the starting strain. The highest crocetin titer (6278 μg/L) reported in microbes was achieved in 5-L bioreactors. This study provides a good insight into key enzyme manipulation involved in serial reactions for microbial overproduction of desired compounds with complex structure.

Reference Type
Journal Article
Authors
Chai F, Wang Y, Mei X, Yao M, Chen Y, Liu H, Xiao W, Yuan Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference