Reference: Schopper S, et al. (2017) Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat Protoc 12(11):2391-2410

Reference Help

Abstract


Protein structural changes induced by external perturbations or internal cues can profoundly influence protein activity and thus modulate cellular physiology. A number of biophysical approaches are available to probe protein structural changes, but these are not applicable to a whole proteome in a biological extract. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a recently developed proteomics approach that enables the identification of protein structural changes directly in their complex biological context on a proteome-wide scale. After perturbations of interest, proteome extracts are subjected to a double-protease digestion step with a nonspecific protease applied under native conditions, followed by complete digestion with the sequence-specific protease trypsin under denaturing conditions. This sequential treatment generates structure-specific peptides amenable to bottom-up MS analysis. Next, a proteomics workflow involving shotgun or targeted MS and label-free quantification is applied to measure structure-dependent proteolytic patterns directly in the proteome extract. Possible applications of LiP-MS include discovery of perturbation-induced protein structural alterations, identification of drug targets, detection of disease-associated protein structural states, and analysis of protein aggregates directly in biological samples. The approach also enables identification of the specific protein regions involved in the structural transition or affected by the binding event. Sample preparation takes approximately 2 d, followed by one to several days of MS and data analysis time, depending on the number of samples analyzed. Scientists with basic biochemistry training can implement the sample preparation steps. MS measurement and data analysis require a background in proteomics.

Reference Type
Journal Article
Authors
Schopper S, Kahraman A, Leuenberger P, Feng Y, Piazza I, Müller O, Boersema PJ, Picotti P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference